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ABSTRACT

Linear stability theory is used to study the effect of crossflow on C_rtler instability in

incompressible boundary layers. The results cover a wide range of sweep angle, pressure gradient,

and wall curvature parameters. It is shown that the crossflow stabilizes G{irtler disturbances by

reducing the maximum growth rate and shrinking the unstable band of spanwise wave numbers. On

the other hand, the effect of concave wall curvature on crossflow instability is destabilizing.

Calculations show that the changeover from C_rtler to crossflow instabilities is a function of G_rtler

number, pressure gradient and sweep angle. The results demonstrate that G6rtler instability may

still be relevant in the transition process on swept wings even at large angles of sweep if the

pressure gradient is sufficiently small. The influence of pressure gradient and sweep can be

combined by defining a crossflow Reynolds number. Thus, the changeover from C_rtler to crossflow

instability takes place at some critical crossflow Reynolds number whose value increases with

G_rtler number.
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1. Introduction

A problem of great practical interest in aerospace applications is the drag reduction on aircraft

wings, nacelles, etc. This has stimulated a number of research efforts on laminar-turbulent

transition phenomenon for effective application of laminar flow control (LFC) which offers significant

potential for reducing drag on aerodynamic surfaces. The supercritical wing is an example of

advanced designs of laminar-flow airfoils. This wing has two concave regions on its lower surface

and, therefore, when it is swept, the flow is subject to not only cross flow instability but also possibly

the G6rtler instability. The crossflow instability is observed on swept wings and leads to streamwise

corotating vortices while G6rtler instability is identified by the formation of pairs of counterrotating

vortices with their axes aligned with the flow direction.

In this paper, the effect of crossflow on C_rtler instability is investigated. In the case of swept

supereritical wing which supports both C_rtler and crossflow instabilities a question arises as to

which of these two vortex instabilities is significant for a given set of conditions. This question is

also relevant for hypersonic flow ahead of engine inlet where concave curvature and some three-

dimensionality are present either by design or inadvertently. Previous works addressing this

problem are few and limited in scope and include theoretical works of Hall (1985), Collier and Malik

(1987), Bassom and Hall (1991), and Blackaby and Choudhari (1993) and the experimental work of

Kohama (1987) and more recently by Bippes (1994).

Hall (1985) studied the effect of crossflow on C_rtler vortices for flow over an infinitely long

swept cylinder using asymptotic analysis. He concluded that the crossflow has a stabilizing effect on

G_rtler vortices and that for large angles of sweep the G6rtler instability does not exist. For the

concave region of a supercritical wing, Collier and Malik (1987) used Orr-Sommerfeld approach and

showed that at low sweep angles the instability is of C_rtler type and as the sweep angle increases

the instability becomes of crossflow type. They also showed that concave surface curvature has a

destabilizing influence on crossflow instability. Using hot-wire anemometry and smoke-wire flow

visualization techniques, Kohama (1987) observed C_rtler instability in the concave region in the

absence of sweep and crossflow instability for 47 ° of sweep. The relation between G_rtler and

crossflow vortices was further studied by Bassom and Hall (1991). They found that G_rtler vortices

cannot exist on swept wings when the angle of sweep exceeds 20 °. Blackaby and Choudhari (1993)

studied inviscid instability of three-dimensional boundary layers over both concave and convex

surfaces. They also investigated the relation of this problem to the stability of stratified shear flows.
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Most of the aforementioned theoretical studies were based on asymptotic analyses in the large

GSrtIer number limit and within the framework of inviscid linear theory. Moreover, they were

restricted to a single value of the pressure-gradient parameter (flh = 0.5). In this paper, we present

detailed results on the effect of crossflow on C_rtler vortex instability by using viscous analysis. The

governing mean flow equations and linear stability analysis are presented in the next section

followed by the results in section 3.

2. Problem Formulation

We consider a three-dimensional boundary-layer flow over a concave surface whose constant

radius of curvature rt= 1/r t. The streamwise, wall-normal and the spanwise coordinates are

denoted as x = X/t o, y = Y/to and z = Z/to, respectively (y = 0 denotes the wall), where the length

scale t o will be prescribed later. Let the x,y and z components of the velocity and pressure be g/ven

by

(ut,vt,wt ) = Ue {U(x, y)+ u(x,y,z,t ), V(x, y)+ v(x,y,z,t ), W + w(x, y,z,t )} (1)

pt = pU_(P + p(x,y,z,t)) (2)

where the superscript t represents a dimensional quantity and Ue is the velocity scale. Here U, V

and W are mean-flow components whereas u, v, w represent the perturbation velocity components in

x, y, z directions, respectively. Similarly, P and p represent the mean and perturbation pressures.

The mean flow investigated in this study is the Falkner-Skan-Cooke (FSC) boundary layer. We

consider the chordwise potential flow velocity distribution:

U. --cX m

where the exponent m is related to the Hartree pressure gradient parameter flh = 2m/(m + 1) which

defines the wedge half angle (z/2)fl h. The spanwise potential flow velocity component, W.., parallel

to the leading edge is constant. With the similarity variable 77 defined by y=Y/i where
v.., w.

= (vX/U.) Iz2, v the kinematic viscosity, U = _-_-r, W =-u-_g, the self-similar three-dimensional

boundary layer equations are given by:

f,, +m+____fl'l_,, + re(l_ f,2) =0 (3)



g" + m-_ l fg'=O (4)

where the primes denote differentiation with respect to 7/.

We assume that the Reynolds number is large and that the radius of curvature is much larger

than the boundary-layer thickness, 8 (i.e., kt6 << 1). In this case, if r = rtto, the equations

governing the perturbation quantifies are

.-_+U.--_+JuJu u.-._.+#Uv--_+v-_+w.--_+"Ju #U _ Ju r(Uv+Vu)+_____V2u=O (5)

_v _ oN" Jv v--_+W-_-2_Uu+-_-RV2U=O
(6)

O'W o_W o_W o_p 1 2

w=o (7)Jt

where

The boundary conditions are

Ju Jv Jw

Ca)

V 2 _2 _2 _2

u=v=w=O at y=O and u_O, v_O, w_O, as y-_ (9)

Here, t o and Ue are constants so as to define Reynolds number R as

R = UJo
V

where the length scale 2o = v,j-V_o/Ue , X o being the location (dimensional) of a reference streamwise

station. In flows where GSrtler vortex phenomenon constitutes the dominant primary instability,

C_rtler number is generally of 0(20) where G is defined as

G = R_o _t (I0)



In the present paper, we solve the viscous linear stability equations under the parallel-flow

approximation. While such an approximation is questionable for G_rtler vortices at O(1) GSrtler and

wave numbers, it is less so for high G_rtler numbers. The quasi-parallel approach, despite its limi-

tations, provides a useful tool to study the link between C_rtler and crossflow disturbances, includ-

ing the effect of viscosity. Parabolized stability equations (Bertolotti et al. 1992, Malik and Li 1993)

represent a more appropriate model for this problem, but the local approach adopted here allows

parametric studies to be performed more efficiently. Except for fiat walls (G = 0) where only

crossflow instabiliW is relevant and for which quasi-paraUel assumption has been commonly used,

we will consider large G_rtler numbers (G _ 15) so that the error introduced by the above

approximation is minimized. For large G_rtler numbers, the present results are at least as valid as

the previous asymptotic results with the added effect of viscosity.

Under the parallel flow approximation (U=U(y), V=O,W=W(y)) allows stationary

disturbances of the form

f_(x,y,z) = _(y)e i('_+_) + c.c. (11)

where _ = [u,v,w,p] r and c.c. stands for complex conjugate. Substituting Eq. (11) into Eqs. (5)-(8)

yields the following ordinary differential equations

kdy
(12)

-2gJ,_ +_ + _yP = 0
(13)

where

_-t_+ifl/3=O (14)

iafi+_+ifl_+_fi = 0

1 2 2 d2 d

L ay yj

(15)

The boundary conditions for the above equations are

(16)
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_0, _0, zb_O as y_ (17)

Equations (12)-(15) along with homogeneous boundary conditions (16)-(17) constitute an eigenvalue

problem

(is)

which issolvedby fourth-orderaccuratecompact differencescheme describedby Malik et al.(1982).

As noted in Malik and Li (1993)and Masad and Malik (1994),the dominant curvatureterm for

three-dimensionalboundary-layerstabilityisthe 2_ term inthe normal momentum equation.An

orderofmagnitude analysisoftheG6rtlervortexproblem intwo-dimensionalflowsleadstothe same

conclusion(Hall1983).

3. Results

The results presented in this paper are obtained by solving the linear stability equations (12-17)

for a Reynolds number'of R =Dee o/v = 1000. While the GSrtler instability depends only on the

value of the C_rtler number (Eq. (10)), crossflow instability depends also on the value of Reynolds

number, but at this high value of Reynolds number the dependence is weak since crossflow

instability is basically inviscid in nature. Figure 1 (for flh = 0.5) shows the effect of sweep angle A in

racUans A = tan-X(W./U..), on spatial growth rate (scaled with go) of stationary disturbances for

different C_rtler numbers. The corresponding streamwise wave numbers are shown in Fig. 2. In the

absence of wall Curvature (Fig. ia) where the instability is of crossflow type the growth rate

increases with the increase in the sweep angle. As G6rtler number increases (Figs. lb, c, d) two

distinct features of the growth rate are observed; at low sweep angles the instability is of G6rtler

type and as the sweep angle increases beyond a certain limit the instability becomes of crossflow

type. This sweep angle limit corresponding to the changeover from C_rtler to crossflow instabilities

is dependent on G6rtler number and as will be seen below, on the pressure-gradient parameter fib.

As shown in Fig. 1 the "changeover" sweep angle increases with the increase in G6rtler number. For

G = 50, the changeover occurs at approximately A = 0.4 radians (23°). The corresponding value

reported by Bassom and Hall (1991) for the large G_rtler number inviscid limit is A = 20 °. Thus our

viscous calculation using flh = 0.5, G = 50 yields a result close to that obtained by the inviscid theory.

In the sweep angle range over which G{irtler instability is present, we notice (see Figs. I b,c,d)

that the maximum growth rate decreases with the increase in the sweep angle. Moreover, the



unstableband ofspanwise wave numbers shrinkswith the increasein crossflow;thus,the effectof

crossflowon G_rtlerdisturbanceisa stabilizingone. Itisalsotobe noted thatintheinviscidC_rtler

problem,onlytheleftbranch ofthe growth curve ispresent.The rightbranch which givesrisetoa

neutralpointathigh wave numbers isdue tothe effectofviscosity.This rightneutralpointmoves

tolowerwave numbers when sweep angleincreasesasnoted above.

Another observation is made here with regards to the influence of wall curvature on crossflow

instability. The results shown in Fig. 1 are replotted in Fig. 3 for six different sweep angles. It is

seen that concave wall curvature enhances crossflow instability (see Figs. 3 c,d,e,f), as was earlier

shown by Collier and Malik (1987). In contrast, convex wall curvature stabilizes crossflow

disturbances (Malik and Balakumar 1993, Masad and Malik 1994). These effects are also consistent

with the inviscid results of Blackaby and Choudhari (1993).

An important parameter relevant in three-dimensional boundary-layer flows is the crossflow

Reynolds number defined as

Rcf -- V'c_o.1 Iv (19)

where U"-cis the magnitude of the maximum crossflow velocity (in a direction which is at right angle

to the local inviscid streamline) within the boundary layer and So.1 is the boundary-layer thickness

within which the crossflow velocity drops to 10 percent of U c.

In Fig. 4, the variation of crossflow Reynolds number with sweep angle is plotted for different

fib- It is clear that the crossflow Reynolds number increases pressure gradient for any sweep angle.

Therefore, the crossflow instability is expected to be enhanced with pressure gradient. The results in

Figs. 1-3 were obtained for a single value of the pressure gradient (fib = 0.5). The results for

different values of pressure gradient parameter are presented in Fig. 5. The effect of pressure

gradient is seen to influence G_irtler and crossflow instabilities in two different ways. As the

pressure gradient becomes more favorable, the maximum GSrtler vortex growth rate decreases and

the unstable band of spanwise wave numbers shrinks. In contrast, the crossflow instability

increases with the pressure gradient. Thus, the increase in flh destabilizes crossflow vortices and

stabilizes G_rtler vortex instability. This is a direct result of increase in the crossflow velocity (and

consequently Rcf) with pressure gradient.

For any given sweep angle, results such as those in Fig. 5 enable us to identify the pressure

gradient at which GSrtler instability is destroyed in favor of crossflow instability. Alternatively, for

any given pressure gradient the sweep angle corresponding to the changeover from GSrtler to

6
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crossflow instabilities can be determined. When the maximum growth rate is calculated for different

values of pressure gradient and sweep angles and the results are plotted in the manner shown in

Fig. 6, the following observations can be made:

(1) Each curve corresponding to a given sweep angle has, when applicable, two branches of opposite

slopes. The lower branch (negative slope) corresponds to G6rtler instability while the upper

branch corresponds to crossflow instability.

(2) For small sweep angles (A -- 0.1 radians) the instability is of G6rtler type for any pressure

gradient parameter fib.

(3) For large sweep angles G6rtler instability is restricted to small pressure gradients.

Thus, a reduction in the pressure gradient renders instability of the C__rtler type. For example,

for G = 15 (Fig. 6a) C_rtler instability is the dominant mechanism for pressure gradients flh < 0.25

and sweep angles greater than 0.3 whereas for G = 30 (Fig. 6b) this occurs at higher pressure

gradients. Thus, G6rtler instability may be the cause of transition in incompressible flow even at

high angles of sweep if'the pressure gradient is sufficiently small but nonzero. For zero-pressure

gradient, Rcf = 0 for any sweep angle and there is no crossflow instability.

In three-dimensional boundary-layer transition, crossflow Reynolds number, Rcf, is used as a

governing parameter in correlating the transition onset. In this study we look into a possible

correlation for the changeover from C_'rtler to crossflow instability in terms of Rcf. Figure 7 shows

the variation of maximum growth rate with Rcf for different pressure gradient levels while Fig. 8

shows the results for fixed sweep angles. The Rcf double values (e.g., Fig. 7b for 13h = 0.5) are a

result of the R_f variation with sweep angle shown in Fig. 4 as A increases beyond a value of 0.76

radians. In Figs. 7a,b for any fLxed pressure gradient, the minimum value of the maximum growth

rate, when applicable, corresponds to the changeover from Gfrtler (left branch) to crossflow (right

branch) instability. The corresponding R_f denoted as Rcf_ (the changeover R_f) is seen to be a

function of pressure gradient, sweep and the G6rtler number. However, the strong dependence of

R_fc is on G6rtler number. A comparison of Figs. 7(a) and 8(a) for G = 15 shows that Rcf_ - 70-100

while a similar comparison of Figs. 7(b) and 8(b) for G =30 shows that the changeover takes place at

R_f_ ~ 150--200. Thus R_f is an important parameter for determining the changeover from G6rt]er to

crossflow instability but its value increases with G6rtler number.



The above results represent an important guide for the design of advanced LFC wings.

However, it is cautioned that they are based upon local theory. Clearly, whether crossflow can

destroy C_rtler vortices depends upon nonlinear effects and the strength of the vortex which is

related to the upstream history (distribution of wall curvature and pressure gradient for a given

leading-edge sweep) and this evolution is best described by nonlinear parabolized stability equations.

4. Conclusions

An investigation of the relation between G_rtler and crossflow instabilities of incompressible,

three-dimensional boundary-layer flow is carried out using linear stability theory. The results cover

a wide range of sweep angles, pressure gradients and wall curvature. It is shown that C_rtler

instability may persist even at large sweep angles when the pressure gradient is small. The results

demonstrate the stabilizing effect of crossflow on C_rtler disturbances and the destabilizing effect of

concave wall curvature on crossflow disturbances. It is shown that the changeover from G_rtler to

crossflow instabilities is governed by crossflow Reynolds number. The value of crossflow Reynolds

number at which the instabilities are switched increases with increasing C_rtler number.
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Figure Captions

Figure 1. Effect of sweep angle A (radians) on spatial growth rate of stationary disturbances in

Falkner-Skan-Cooke (FSC) boundary layer for different values of G6rtler numbers.

Figure 2. Variation of streamwise wave number with spanwise wave number for different sweep

angles and C_rtler numbers.

Figure 3. Effect of wall curvature on spatial growth rate of G_rtler and crossflow disturbances in

FSC boundary layer for different values of sweep angle A.

Figure 4. Variation ofcrossflow Reynolds number with pressure gradient and sweep.

Figure 5. Effect of pressure gradient on spatial growth rate of stationary crossflow and G_rtler

disturbances of FSC boundary layers.

Figure 6. Effect of sweep angle and pressure gradient on maximum growth rate of stationary

crossflow and C_rtler disturbances of FSC boundary layer for two different G6rtler numbers.

Figure 7. Variation of maximum growth rate with Rcf for fLxed _h-

Figure 8. Variation of maximum growth rate with Rcf for fixed A.
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